Álgebra lineal Ejemplos

Hallar los vectores propios/el espacio propio A=[[0,7],[1/7,0]]
Paso 1
Obtén los valores propios.
Toca para ver más pasos...
Paso 1.1
Establece la fórmula para obtener la ecuación característica .
Paso 1.2
La matriz de identidades o matriz unidad de tamaño es la matriz cuadrada con unos en la diagonal principal y ceros en los otros lugares.
Paso 1.3
Sustituye los valores conocidos en .
Toca para ver más pasos...
Paso 1.3.1
Sustituye por .
Paso 1.3.2
Sustituye por .
Paso 1.4
Simplifica.
Toca para ver más pasos...
Paso 1.4.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.4.1.1
Multiplica por cada elemento de la matriz.
Paso 1.4.1.2
Simplifica cada elemento de la matriz.
Toca para ver más pasos...
Paso 1.4.1.2.1
Multiplica por .
Paso 1.4.1.2.2
Multiplica .
Toca para ver más pasos...
Paso 1.4.1.2.2.1
Multiplica por .
Paso 1.4.1.2.2.2
Multiplica por .
Paso 1.4.1.2.3
Multiplica .
Toca para ver más pasos...
Paso 1.4.1.2.3.1
Multiplica por .
Paso 1.4.1.2.3.2
Multiplica por .
Paso 1.4.1.2.4
Multiplica por .
Paso 1.4.2
Suma los elementos correspondientes.
Paso 1.4.3
Simplify each element.
Toca para ver más pasos...
Paso 1.4.3.1
Resta de .
Paso 1.4.3.2
Suma y .
Paso 1.4.3.3
Suma y .
Paso 1.4.3.4
Resta de .
Paso 1.5
Find the determinant.
Toca para ver más pasos...
Paso 1.5.1
El determinante de una matriz puede obtenerse usando la fórmula .
Paso 1.5.2
Simplifica cada término.
Toca para ver más pasos...
Paso 1.5.2.1
Reescribe con la propiedad conmutativa de la multiplicación.
Paso 1.5.2.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 1.5.2.2.1
Mueve .
Paso 1.5.2.2.2
Multiplica por .
Paso 1.5.2.3
Multiplica por .
Paso 1.5.2.4
Multiplica por .
Paso 1.5.2.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.5.2.5.1
Mueve el signo menos inicial en al numerador.
Paso 1.5.2.5.2
Cancela el factor común.
Paso 1.5.2.5.3
Reescribe la expresión.
Paso 1.6
Establece el polinomio característico igual a para obtener los valores propios .
Paso 1.7
Resuelve
Toca para ver más pasos...
Paso 1.7.1
Suma a ambos lados de la ecuación.
Paso 1.7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 1.7.3
Cualquier raíz de es .
Paso 1.7.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 1.7.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 1.7.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 1.7.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
Paso 3
Find the eigenvector using the eigenvalue .
Toca para ver más pasos...
Paso 3.1
Sustituye los valores conocidos en la fórmula.
Paso 3.2
Simplifica.
Toca para ver más pasos...
Paso 3.2.1
Resta los elementos correspondientes.
Paso 3.2.2
Simplify each element.
Toca para ver más pasos...
Paso 3.2.2.1
Resta de .
Paso 3.2.2.2
Resta de .
Paso 3.2.2.3
Resta de .
Paso 3.2.2.4
Resta de .
Paso 3.3
Find the null space when .
Toca para ver más pasos...
Paso 3.3.1
Write as an augmented matrix for .
Paso 3.3.2
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 3.3.2.1
Multiply each element of by to make the entry at a .
Toca para ver más pasos...
Paso 3.3.2.1.1
Multiply each element of by to make the entry at a .
Paso 3.3.2.1.2
Simplifica .
Paso 3.3.2.2
Perform the row operation to make the entry at a .
Toca para ver más pasos...
Paso 3.3.2.2.1
Perform the row operation to make the entry at a .
Paso 3.3.2.2.2
Simplifica .
Paso 3.3.3
Use the result matrix to declare the final solution to the system of equations.
Paso 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
Paso 3.3.5
Write the solution as a linear combination of vectors.
Paso 3.3.6
Write as a solution set.
Paso 3.3.7
The solution is the set of vectors created from the free variables of the system.
Paso 4
Find the eigenvector using the eigenvalue .
Toca para ver más pasos...
Paso 4.1
Sustituye los valores conocidos en la fórmula.
Paso 4.2
Simplifica.
Toca para ver más pasos...
Paso 4.2.1
Suma los elementos correspondientes.
Paso 4.2.2
Simplify each element.
Toca para ver más pasos...
Paso 4.2.2.1
Suma y .
Paso 4.2.2.2
Suma y .
Paso 4.2.2.3
Suma y .
Paso 4.2.2.4
Suma y .
Paso 4.3
Find the null space when .
Toca para ver más pasos...
Paso 4.3.1
Write as an augmented matrix for .
Paso 4.3.2
Obtén la forma escalonada reducida por filas.
Toca para ver más pasos...
Paso 4.3.2.1
Perform the row operation to make the entry at a .
Toca para ver más pasos...
Paso 4.3.2.1.1
Perform the row operation to make the entry at a .
Paso 4.3.2.1.2
Simplifica .
Paso 4.3.3
Use the result matrix to declare the final solution to the system of equations.
Paso 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
Paso 4.3.5
Write the solution as a linear combination of vectors.
Paso 4.3.6
Write as a solution set.
Paso 4.3.7
The solution is the set of vectors created from the free variables of the system.
Paso 5
The eigenspace of is the list of the vector space for each eigenvalue.